★★★★☆
3.1 étoiles sur 5 de 511 notes
2018-07-27
Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing - de Tyler Akidau, Slava Chernyak, Reuven Lax (Author)
Details Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing
Le tableau suivant montre les points spécifiques relatives aux Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing
| Le Titre Du Fichier | Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing |
| Date de Parution | 2018-07-27 |
| Traducteur | Ireoluwa Kyrese |
| Chiffre de Pages | 818 Pages |
| La taille du fichier | 29.46 MB |
| Langue | Français & Anglais |
| Éditeur | Virgin Publishing |
| ISBN-10 | 7829952260-NXM |
| Format de eBook | PDF AMZ EPub LIT WRD |
| Créateur | Tyler Akidau, Slava Chernyak, Reuven Lax |
| EAN | 155-2449932183-XTN |
| Nom de Fichier | Streaming-Systems-The-What-Where-When-and-How-of-Large-Scale-Data-Processing.pdf |
Télécharger Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing Livre PDF Gratuit
Full Video watchvcOShsisEsC0 An overview of the relation and combination of three data processing paradigms that is becoming more re…
Streaming Systems The What Where When and How of LargeScale Data Processing English Edition de Tyler Akidau Slava Chernyak et al 16 juillet 2018 50 sur 5 étoiles 2
Scientific workflows have become a valuable tool for largescale data processing and analysis This has led to the creation of specialized online repositories to facilitate worflkow sharing and reuse Over time these repositories have grown to sizes that call for advanced methods to support workflow discovery in particular for similarity search
Découvrez et achetez Streaming Systems Livraison en Europe à 1 centime seulement
Toutes nos catégories Sélectionnez la section dans laquelle vous souhaitez faire votre recherche
The main reasons are the complexity of the systems and the difficulty to adapt the access methods to the data This thesis proposes new physical and logical optimizations to optimize execution plans of astronomical queries using transformation rules These methods are integrated in ASTROIDE a distributed system for largescale astronomical data E achieves scalability and
In this case we’ll simulate a data stream of data about airline flights where the records contain only the flight number carrier and the origin and desnaon airports and other data we’ll ignore for this example like mes